
 The code from the Preview Edition of
Hexagonal Architecture Explained

How the Ports & Adapters architecture simplifies
your life, and how to implement it

Alistair Cockburn

Juan Manuel Garrido de Paz

©Alistair Cockburn 2024 all rights reserved
ISBN 978-1-7375197-8-2
Humans and Technology Press
32 W 200 S #504
Salt Lake City, UT 84101
V0.9a 20240507-1836 for paper books

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 2 of 23

Acknowledgements
From Alistair

I am immensely grateful to Juan Manuel Garrido de Paz, without whom
this book could never have been written. Of all the people I have
conversed with, Juan had the sharpest, deepest, most accurate
understanding of the pattern. He saw its relationship to UML
components and the required interface years before I did.

He was relentless in his quest to understand and describe the pattern.
He provided code for me to study and include. We argued incessantly,
but only ever in pursuit of the truth. Once we found it, we were once
again in complete agreement.

Juan was also a relentless fan of FC Huelva:

Juan at Huelva, 2024

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 3 of 23

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 4 of 23

1.1. Copy this code
All the pages in this book only serve to help you replicate this code
snippet in your larger system. Here is some Java code to show you the
interface definitions explicitly:

interface ForCalculatingTaxes {
 double taxOn(double amount);
}
interface ForGettingTaxRates {
 double taxRate(double amount);
}

class TaxCalculator implements ForCalculatingTaxes {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {
 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new
FixedTaxRateRepository();
 ForCalculatingTaxes myCalculator = new TaxCalculator(
taxRateRepository);
 System.out.println(myCalculator.taxOn(100));
 }

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 5 of 23

The Ruby code shows how dynamic languages create the same system
with no interface definitions:

class TaxCalculator
 def initialize(tax_rate_repository)
 @tax_rate_repository = tax_rate_repository
 end

 def tax_on(amount)
 amount * @tax_rate_repository.tax_rate(amount)
 end
end

class FixedTaxRateRepository
 def tax_rate(amount)
 0.15
 end
end

tax_rate_repository = FixedTaxRateRepository.new
my_calculator = TaxCalculator.new(tax_rate_repository)
puts my_calculator.tax_rate(100)

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 6 of 23

3.1. The simplest example: the tax calculator
We present this example in four parts.

1. First, we show just the tax_on() function in use. We use the simplest
rate repository, which returns a fixed rate. This is the first step in
creating architecture with as little code as possible.

From this point forward, the drivers can change and grow, the port
interfaces can change and grow, the business logic contained within
the app can change and grow, and the repositories can change and
grow, without any need to change the fundamental architecture.

We chose to use Java for this first part, because it helps show the
ports being defined and used.

2. Second, we provide the same code in Ruby. This illustrates how the
code looks when it’s not necessary to declare the ports or
interfaces.

3. The third shows using setter injection instead of dependency
injection. That is to say, the driven actor is not set in the
constructor, but in a setter method. This allows the driven actor to
be changed at any time.

4. The fourth stage shows a different configurator, one that uses
dependency lookup instead of dependency injection for the
configurator.

 The tax calculator is augmented to hook to different rate
repositories for different countries. The configurator is now a “rate
repository broker” that says what rate repository to use for any
country requested. This permits different tax tables for different
countries, or for adapters to connect to the official tax authority for
different countries.

Of course, we need a second port for this broker. It follows that we
then need a test double for it, as well as a configurator for the
broker.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 7 of 23

The simplest tax calculator (Java)

In this simple example of the tax calculator, the configurator main()
passes the receiver to the sender at object creation time. It creates the
FixedTaxRateRepository, the receiver, and sends it to the TaxCalculator as
part of its constructor.

For early development, I use an in-code tax rate repository with just one
fixed tax rate. We chose to begin with Java, to show the interfaces.

interface ForCalculatingTaxes {
 double taxOn(double amount);
}
interface ForGettingTaxRates {
 double taxRate(double amount);
}

class TaxCalculator implements ForCalculatingTaxes {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 8 of 23

 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new
FixedTaxRateRepository();
 TaxCalculator myCalculator = new TaxCalculator(taxRateRepository);
 System.out.println(myCalculator.taxOn(100));
 }

Notes:

“ForCalculatingTaxes” is the driving port, with, just for the moment,
only one function offered: “taxOn(amount)”.

“ForGettingTaxRates” is the driven port. It require every repository to
support the function “taxRate(amount)”.

The TaxCalculator implements the driving port, and uses the driven
port.

The FixedRateRepository implements the driven port, as every rate
repository would do.

Main acts as both the configurator and, in this tiny case, also the driving
actor. The first two lines act as the configurator, creating the
FixedRateRepository and feeding it to the TaxCaculator at creation time.
The last line is using the driving port as any user might.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 9 of 23

The simplest tax calculator (Ruby)

This code accomplishes the same work as the prior Java example, but in
Ruby. The ports and interfaces don’t have to be declared in Ruby, which
makes it difficult to see where they are.

class TaxCalculator

 def initialize(tax_rate_repository)
 @tax_rate_repository = tax_rate_repository
 end

 def tax_on(amount)
 amount * @tax_rate_repository.tax_rate(amount)
 end
end

class FixedTaxRateRepository
 def tax_rate(amount)
 0.15
 end
end

tax_rate_repository = FixedTaxRateRepository.new
my_calculator = TaxCalculator.new(tax_rate_repository)
puts my_calculator.tax_rate(100)

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 10 of 23

Using a setter instead of constructor argument (Java)

In this example, we build upon previous examples to demonstrate that
it’s not required to set the driven actors in the constructor arguments
(constructor injection). In fact, it’s just as valid to use a setter method
(setter injection). This allows the driven actor to be changed at any
time.

interface ForGettingTaxRates {
 double taxRate(double amount);
}

class TaxCalculator {
 private ForGettingTaxRates taxRateRepository;
 public void setTaxRateRepository(ForGettingTaxRates taxRateRepository)
{
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository.taxRate(amount);
 }
}

class FixedTaxRateRepository implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {
 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new
FixedTaxRateRepository();
 TaxCalculator myCalculator = new TaxCalculator();
 myCalculator.setTaxRateRepository(taxRateRepository);
 System.out.println(myCalculator.taxOn(2000));
 }
}

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 11 of 23

Using a broker instead of a fixed rate repository (Ruby)

The fourth adjustment shows the use of dependency lookup instead of
configurable receiver to configure the driven actor.

We introduce a rate repository broker, which will tell the calculator
what rate repository to use for any given country. This allows different
rate repositories to handle the different tax rate tables in various
countries, or to have an adapter that connects directly to a country’s
official tax authority.

To do this, we introduce a second port,
“ForGettingCountryBasedTaxRateRepository”. This port requires one
function, RepositoryForCountry(country).

Now that we have a second port, we need to be able to test it. There
needs to be a test double as well as a production rate repository broker.
This in turn means we need a configurator for the broker port. Here we
use constructor injection to set the broker to use at the time the tax
calculator is created.

We chose to show this code in Ruby because it’s easier to see the
intention. We’ll then use Java to show the second port beng declared.

class RateRepositoryBroker
 def initialize
 @tax_rate_repository_FR = TaxRateRepositoryFR.new
 @tax_rate_repository_US = TaxRateRepositoryUS.new
 end
 def repository_for(country)
 if country == "US" return @tax_rate_repository_US
 elsif country == "FR" return @tax_rate_repository_FR
 else return nil
 end
 end
end

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 12 of 23

class TaxCalculator
 def initialize(repository_broker)
 @my_rate_repository_broker = repository_broker
 end

 def tax_on(country, amount)
 tax_rate_repository = @my_rate_repository_broker.repository_for(
country)
 amount * tax_rate_repository.tax_rate(amount)
 end
end

class TaxRateRepositoryFR
 def tax_rate(amount)
 0.30
 end
end

class TaxRateRepositoryUS
 def tax_rate(amount)
 0.15
 end
end

my_tax_rate_broker = RateRepositoryBroker.new
my_calculator = TaxCalculator.new(my_tax_rate_broker)
puts my_calculator.tax_rate("FR", 2000)
puts my_calculator.tax_rate("US", 2000)puts my_calculator.tax_rate(100
)

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 13 of 23

3.2. Another simple example, the web-hexagon
In the 2010s, Alistair started building a custom content management
system in Ruby. To do this, he needed to install and connect to a web
service as the driving actor. He began with the simplest app possible:
just returning the input multiplied by a number from a repository.

Output = Input * database[Input].

Ruby allows you to return two values, so Alistair had it return both the
tax rate and the result of the multiplication.

The first test uses a mock repository. This is enough to establish the
Ports & Adapters architecture. Developing the architecture further with
different external technologies, he added Rack for the web on the input
side and a flat file for the repository.

After growing the app some more, he simplified it back down to the
smallest serviceable example, to show how simple the code is. See
https://github.com/totheralistair/SmallerWebHexagon

Just the app

The app gets configured with the secondary actor through its
constructor, setting the repository to use. Because this is coded in Ruby,
there are no declarations for the ports.

class SmallerWebHexagon

 def initialize rater
 @rater = rater # the database port needs configuring
 end

 def rate_and_result value
 rate = @rater.rate(value)
 result = value * rate
 return rate, result
 end
end

The first repository: an in-memory repository:

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 14 of 23

To make the tests a bit interesting, we use two tax rates.

class InCodeRater

def rate value
 case
 when value <= 100
 1.01
 when value > 100
 1.5
 end
 end

end

The first test: test-harness to app to in-memory rater

In this first test, you can see the InCodeRater being passed in with the
constructor.

class TestRequests < Test::Unit::TestCase
 attr_accessor :app

 def test_it_works_with_in_code_rater
 p __method__

 @app = SmallerWebHexagon.new(InCodeRater.new)

 value_should_produce_rate 100, 1.01
 value_should_produce_rate 200, 1.5
 end

At this point the Ports & Adapters architecture has already been
completed, there is a primary port for computing taxes, and a secondary
one for getting tax rates. Note again that since Ruby does not require
interfaces to be declared, the ports themselves are not explicitly visible.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 15 of 23

Adding a second type of repository

To test that the architecture functions as intended, we create a file with
the tax rates:

0 1.0
100 2.0

We add a file reader as the adapter:

class FileRater

 def initialize fn
 @rates = []
 File.open(fn) do |f|
 f.each_line do |line|
 @rates << line.split.map(&:to_f)
 end
 end
 end

 def rate value # ugly code but I only need to know it works
 case
 when value >= @rates[0][0] && value < @rates[1][0]
 rate = @rates[0][1]
 when value >= @rates[0][0]
 rate = @rates[1][1]
 end
 end

end

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 16 of 23

Finally, we add a test to ensure all this works. Personally, I like to use a
different number in the file rater, so I can tell which rater is being
activated.

 def test_it_works_with_file_rater
 p __method__

 @app = SmallerWebHexagon.new(FileRater.new('file_rater.txt'))

 value_should_produce_rate 10, 1.00
 value_should_produce_rate 100, 2.0
 end

Add a web interface at the front

Finally, we add the interface to Rack for web input.

class RackHttpAdapter

 def initialize(hex_app, views_folder)
 @app = hex_app
 @views_folder = views_folder
 end

 def call(env) # hooks into the Rack Request chain
 request = Rack::Request.new(env)
 value = path_as_number(request)

 rate, result = @app.rate_and_result value

 out = {
 out_action: 'result_view',
 value: value,
 rate: rate,
 result: result
 }

 template_path =
Pathname.new(@views_folder).join(out[:out_action]).sub_ext('.erb')

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 17 of 23

 page = html_from_template_file(template_path , binding)

 response = Rack::Response.new
 response.write(page)
 response.finish
 end

To test this, use the in-memory rater from the first test, then built the
app to run live from a browser. This file is "config.ru".

run the Smaller Web Hexagon from a browser

require './src/smaller_web_hexagon'
require './src/rack_http_adapter'
require './src/raters'

hex = SmallerWebHexagon.new(InCodeRater.new)
app = RackHttpAdapter.new(hex,"./src/views/")

run app

At this point we can drive the app from the tests or a browser, and get
the reates from either the in-memory rater or the file.

The final test suite:

Here is the full set of tests:
require_relative '../src/smaller_web_hexagon'
require_relative '../src/rack_http_adapter'
require_relative '../src/raters'
require 'rack/test'
require 'rspec/expectations'
require 'test/unit'

The first 2 tests check the primary adapter swaps, using direct API access
for the left
The last test checks the secondary adapter swap, using Rack input.
The config.ru file runs the real server stuff, for the final usage test.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 18 of 23

note about the tests, I made all the raters give different answers,
so that I can see if they are hooked up wrong

class TestRequests < Test::Unit::TestCase
 attr_accessor :app

 def test_it_works_with_in_code_rater
 p __method__

 @app = SmallerWebHexagon.new(InCodeRater.new)

 value_should_produce_rate 100, 1.01
 value_should_produce_rate 200, 1.5
 end

 def test_it_works_with_file_rater
 p __method__

 @app = SmallerWebHexagon.new(FileRater.new('file_rater.txt'))

 value_should_produce_rate 10, 1.00
 value_should_produce_rate 100, 2.0
 end

 def test_runs_via_rack_adapter
 p __method__

 views_folder = '../src/views/'
 hex = SmallerWebHexagon.new (InCodeRater.new)
 app = RackHttpAdapter.new(hex, views_folder)

 request = Rack::MockRequest.new(app)
 response = request.request('GET', '/100') # sends the req through the
Rack call(env) chain

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 19 of 23

 out = { # expected values
 out_action: 'result_view',
 value: 100,
 rate: 1.01,
 result: (100)*(1.01)
 }
 response.body.should == html_from_template_file(views_folder +
'result_view.erb' , binding)
 end

 def value_should_produce_rate value, exp_rate
 rate, result = @app.rate_and_result value

 rate.should == exp_rate
 result.should == value * exp_rate
 end

end

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 20 of 23

About the Authors

Dr. Alistair Cockburn (pronounced CO-BURN), known for his wild hair
photo on LinkedIn, was named as one of the “42 Greatest Software
Professionals of All Times" in 2020, as a world expert on object-oriented
development, software architecture, project management, use cases
and agile development. Since 2015 he has been working on expanding
agile to cover every kind of initiative, including social impact project,
governments, and families. For his latest work, see
https://alistaircockburn.com/.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 21 of 23

Juan Manuel Garrido de Paz (August 3, 1970 - April 18, 2024) won his
Bachelor in Software Engineering at the Polytechnic University of
Madrid. He became the world’s other leading authority on the Ports &
Adapters pattern by probing and interacting with Dr. Alistair Cockburn
over years. A senior developer for the government of Andalucía, his two
passions were Hexagonal Architecture and Recreativo de Huelva
Football Club. Sadly, Juan passed away just weeks before this book went
to print. This book is dedicated to him and his life.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 22 of 23

R.I.P. Juan Manuel Garrido de Paz. Thank you.

Hexagonal Architecture Explained

© Alistair Cockburn 2024 Page 23 of 23

